Overview

Modeling nonwoven composite based on recycled carbon fiber Job at Imt Nord Europe – in Douai (59)

Réf ABG-102332 Stage master 2 / Ingénieur Durée 6 mois Salaire net mensuel 600

13/01/2022

Imt Nord Europe

Lieu de travail

Douai Les Hauts de France France

Champs scientifiques

Sciences de l’ingénieur

Mots clés

recycled carbon fiber, multi-scale modeling, impact of the manufacturing process

Établissement recruteur

Site web :
https://imt-nord-europe.fr/en/

IMT Nord Europe est une grande école d’ingénieur de l’Institut Mines-Télécom, partenaire de l’Université de Lille. Située au cœur de l’Europe, avec des campus à Lille, Douai, Valenciennes, Dunkerque et Alençon, elle forme les cadres dont le monde a besoin pour porter les transitions énergétique, écologique, industrielle et numérique.

L’ENSAIT offre aujourd’hui un panel de formations de très haut niveau : ingénieurs, masters, doctorats, mastères spécialisés. Ses diplômés sont préparés pour assumer les plus hautes fonctions de l’entreprise. Au-delà de l’excellence scientifique, technologique et managériale, l’ENSAIT prépare ses diplômés à évoluer dans un environnement toujours plus complexe et mondialisé. 130 ans d’excellence textile ont fait de l’ENSAIT la référence internationale. Son laboratoire de recherche, le GEMTEX, dans le domaine des matériaux souples et ses nombreux partenariats avec le monde économique garantissent l’adéquation de ses formations avec les besoins des marchés.

Description

Scientific Context

The carbon fiber is characterized by its very high specific stiffness and strength, anti corrosion and electromagnetic shielding. This is why the aviation industry has made it a flagship material since currently more than half of the total mass of an airplane is made of composite materials. It can even go up to 80% for some helicopters [1]. Thus, it is estimated that by 2050, for the aeronautics sector alone, more than 450,000 tonnes of carbon composite waste will have to be treated [2]. This waste of expensive carbon fiber is valuable and it is a source of numerous advantages related to a reduction of the global warming potential, of supplying of the virgin carbon fibers and carbon fiber reinforced plastics manufacturing cost. Further, the reuse of these fibers could cover a large part of the demand for carbon fibers, which is set to stagnate in the next 20 years at around 180 kT/year [3]. The price of the recycled material is expected to be €10– 20/kg while the virgin carbon fiber products are typically between €30–40/kg [4].

Currently, the recycled carbon fiber (rCF) can be provided as too short fiber below 1mm used as a filler material in injection molding. Furthermore, it is provided in longer length above 10mm to be laid in nonwoven mat [5], [6]. In this textile structure, the fibres are laid planarly with a random orientation. Then the formed layers a superposed and punched in the through-thickness direction. Research papers published recently are concerned to describe the mechanical behavior of composite made of rCF provided as nonwoven reinforcement [5], [6], [7]. However, modeling the composite with randomly distributed rCF is not explored yet. This type of modeling aims to provide an estimation of the macro-mechanical properties of composite based on an RVE of rCF structure permits to evaluate the influence of nonwoven manufacturing parameters on the composite. For example, fibre volume fraction, distribution of fibre length and orientation and punching density are important nonwoven parameters that can impact the mechanical properties of the composite.

The main objective of the project is to explore a modeling strategy towards the construction of an RVE of nonwoven composite based on rCF. Construction of such RVE for a random fibre network was the subject of several studies [8], [9], [10]. In conjunction with statistical information obtained from microscopic observations, these models will be employed for rCF nonwoven. And that will be associated with microscopic observation of fibre distribution in composite to validate the micro-RVE model. Further, the homogenized estimated tensile properties of composite will be verified by experimental work. The fibre properties such as length and nonwoven properties such as fibre volume fraction and fibre orientation distribution have to be considered in the constructed model. That enables evaluation of the influence of these parameters, in addition to composite manufacturing parameters such as moulding pressure, on the tensile properties of rCF composite. This evaluation can provide an optimization route for nonwoven selection in association with composite applications.

Program of work

This proposed work will be shared between GEMTEX Lab (EA n°2461 ENSAIT) and CERI Lab (IMT Nord Europe). They acquired a large mastery regarding textile reinforcement manufacture, preforming, composite fabrication and mechanical characterization. The master student will be formed and accompanied to realize the announced tasks under the supervision of the project proposers from the two laboratories.

Tasks in Gemtex Lab

The characterization of the non-woven web on dry state; such as areal weight, the evolution of the fiber orientation and fiber length will be carried out at GEMTEX Laboratory, which is equipped with the necessary test instruments dedicated for textile materials. Further, the nonwoven composite will be manufactured using thermo compression moulding (or Resine Transfer Molding). Then the tensile properties of the manufactured composite will be characterized. This stage will be realized in cooperation between the two laboratories using adequate measurement systems such as the image correlation system.

Tasks in IMT Lab

The microscopic observation of the fibre distribution and orientation in the matrix domain will be carried out at IMT Laboratory using an optical microscope and/or SEM. Several micro- topographical observations will be performed on the selected samples. The construction of the RVE model at the microscale for fibre network embedded with matrix will be developed in light of these observations. Finally, mechanical tests will be carried out on nonwoven composite (tensile and shear tests to validate modeling strategy).

Reference

[1] S. Mahmoudi. “Dynamique des structures composites linéaire et non-linéaire en présence d’endommagement” Thèse de l’Université de Franche-Comté, 2017.

[2] Balaji, A.B., Rudd, C. & Liu, X. Recycled Carbon Fibers (rCF) in Automobiles: Towards Circular Economy. Material Circular Economy 2, 4 (2020). https://doi.org/10.1007/s42824-020-00004-0

[3] J. Zhang, V.S.Chevali, H. Wang, C.H. Wang, “Current status of carbon fibre and carbon fibre composites recycling”. Composites Part B: Engineering, 193, 2020, 108053

[4] Holmes, M. (2018). Recycled carbon fiber composites become a reality. Reinforced Plastics, 62(3), 148–153. https://doi.org/10.1016/j.repl.2017.11.012

[5] Manis, F., Stegschuster, G., Wölling, J., & Schlichter, S. (2021). Influences on textile and mechanical properties of recycled carbon fiber nonwovens produced by carding. Journal of Composites Science, 5(8), 1–16. https://doi.org/10.3390/jcs5080209

[6] Barnett, P. R., & Ghossein, H. K. (2021). A Review of Recent Developments in Composites Made of Recycled Carbon Fiber Textiles. Textiles, 1(3), 433–465. https://doi.org/10.3390/textiles1030023

[7] Krishna Kumar, K., Hutchinson, A. R., & Broughton, J. G. (2020). Static shear response of recycled carbon fibre composites for structural applications. Composite Structures, 246(April), 112358. https://doi.org/10.1016/j.compstruct.2020.112358

[8] Shahsavari, A. S., & Picu, R. C. (2013). Size effect on mechanical behavior of random fiber networks. International Journal of Solids and Structures, 50(20–21), 3332–3338. https://doi.org/10.1016/j.ijsolstr.2013.06.004

[9] Ban, E., Barocas, V. H., Shephard, M. S., & Picu, C. R. (2016). Effect of fiber crimp on the elasticity of random fiber networks with and without embedding matrices. Journal of Applied Mechanics, Transactions ASME, 83(4), 1–7. https://doi.org/10.1115/1.4032465

[10] Zhang, M., Chen, Y., Chiang, F. P., Gouma, P. I., & Wang, L. (2019). Modeling the large deformation and microstructure evolution of nonwoven polymer fiber networks. Journal of Applied Mechanics, Transactions ASME, 86(1), 1–11. https://doi.org/10.1115/1.4041677

Profil

bonnes bases en mécanique des solides, sciences des matériaux, et calcul des structures.

maîtriser l’un des langages de programmation: Python/Fortran/C++

Prise de fonction

Dès que possible

About the Company

Company: Imt Nord Europe –

Company Location:  Douai (59)

Estimated Salary:

About Imt Nord Europe -